5 Tips for Optimizing Java Performance on Kubernetes

Transcript

Do your instances devour cloud resources or CPU time? Do containers restart frequently for unknown reasons? Are response times suboptimal? Is it challenging to meet service level agreement?

If the answer is yes to any of these questions, these five tips may help you boost the performance of your Java apps in the cloud!

Tip 1. Set CPU and RAM limits properly

Set CPU and RAM limits based on the results of load testing, stress testing, Native Memory tracking data, and other relevant metrics such as memory usage inside the pod. In addition, you should take Kubernetes overhead into account. For instance, AWS Fargate adds 256 MB to each Pod's memory reservation for the required Kubernetes components. 

Tip 2. Configure Kubernetes probes correctly

Probes are essential for monitoring the health of your pod. But improper prob configuration may lead to unnecessary container restarts, unrequired vertical scaling, or other issues. 

Tip 3. Choose a small base image

Choose a small base image to reduce container image size. For instance, Liberica Runtime Container can help you reduce RAM consumption by up to 30%.

Tip 4. Select the right Garbage collector

Select a Garbage Collector tailored to your needs. HotSpot JVM offers a selection of garbage collectors for various purposes, such as ParallelGC for high throughput or ZGC for low latency. 

Tip 5. Reduce application startup and warmup time

Reduce startup and warmup time of your applications. Java services may take dozens of minutes to reach stable peak performance. During that period, they process way fewer requests. You can alleviate the situation by using AppCDS, GraalVM Native Image, or Coordinated Restore at Checkpoint.

Summary

If your Java apps in the cloud struggle with high resource consumption, frequent container restarts, or slow response times, these five tips can help enhance their performance. First, set CPU and RAM limits properly based on load testing and account for Kubernetes overhead. Additionally, configure Kubernetes probes accurately, use a small base image to optimize container size, choose a suitable garbage collector, and reduce application startup and warmup time to ensure faster performance.

About Catherine

Java developer passionate about Spring Boot. Writer. Developer Advocate at BellSoft

Social Media

Videos
card image
Jan 20, 2026
JDBC vs ORM vs jOOQ: Choose the Right Java Database Tool

Still unsure what is the difference between JPA, Hibernate, JDBC, or jOOQ and when to use which? This video clarifies the entire Java database access stack with real, production-oriented examples. We start at the foundation, which is JDBC, a low-level API every other tool eventually relies on for database communication. Then, we go through the ORM concept, JPA as a specification of ORM, Hibernate as the implementation and extension of JPA, and Blaze Persistence as a powerful upgrade to JPA Criteria API. From there, we take a different path with jOOQ: a database-first, SQL-centric approach that provides type-safe queries and catches many SQL errors at compile time instead of runtime. You’ll see when raw JDBC makes sense for small, focused services, when Hibernate fits CRUD-heavy domains, and when jOOQ excels at complex reporting and analytics. We discuss real performance pitfalls such as N+1 queries and lazy loading, and show practical combination strategies like “JPA for CRUD, jOOQ for reports.” The goal is to equip you with clarity so that you can make informed architectural decisions based on domain complexity, query patterns, and long-term maintainability.

Videos
card image
Jan 13, 2026
Hibernate: Ditch or Double Down? When ORM Isn't Enough

Every Java team debates Hibernate at some point: productivity champion or performance liability? Both are right. This video shows you when to rely on Hibernate's ORM magic and when to drop down to SQL. We walk through production scenarios: domain models with many-to-many relations where Hibernate excels, analytical reports with window functions where JDBC dominates, and hybrid architectures that use both in the same Spring Boot codebase. You'll see real code examples: the N+1 query trap that kills performance, complex window functions and anti-joins that Hibernate can't handle, equals/hashCode pitfalls with lazy loading, and practical two-level caching strategies. We also explore how Hibernate works under the hood—translating HQL to database-specific SQL dialects, managing sessions and transactions through JDBC, implementing JPA specifications. The strategic insight: modern applications need both ORM convenience for transactional business logic and SQL precision for data-intensive analytics. Use Hibernate for CRUD and relationship management. Use SQL where ORM abstractions leak or performance demands direct control.

Further watching

Videos
card image
Feb 6, 2026
Backend Developer Roadmap 2026: What You Need to Know

Backend complexity keeps growing, and frameworks can't keep up. In 2026, knowing React or Django isn't enough. You need fundamentals that hold up when systems break, traffic spikes, or your architecture gets rewritten for the third time.I've been building production systems for 15 years. This roadmap covers three areas that separate people who know frameworks from people who can actually architect backend systems: data, architecture, and infrastructure. This is about how to think, not what tools to install.

Videos
card image
Jan 29, 2026
JDBC Connection Pools in Microservices. Why They Break Down (and What to Do Instead)

In this livestream, Catherine is joined by Rogerio Robetti, the founder of Open J Proxy, to discuss why traditional JDBC connection pools break down when teams migrate to microservices, and what is a more efficient and reliable approach to organizing database access with microservice architecture.

Videos
card image
Jan 27, 2026
Sizing JDBC Connection Pools for Real Production Load

Many production outages start with connection pool exhaustion. Your app waits seconds for connections while queries take milliseconds; yet, most teams run default settings that collapse under load. This video shows how to configure connection pools that survive real production traffic: sizing based on database limits and thread counts, setting timeouts that prevent cascading failures, and implementing an open source database proxy Open J Proxy for centralized connection management with virtual connection handles, client-side load balancing, and slow query segregation. For senior Java developers, DevOps engineers, and architects who need database performance that holds under pressure.